A Chemist Makes 340. ML Of Potassium Dichromate (K2Cr2O7) Working Solution By Adding Distilled Water (2024)

Chemistry High School

Answers

Answer 1

The concentration of the chemist's working solution is 0.0564 M.

The first step in solving this problem is to use the dilution formula, which is M1V1 = M2V2, where M is the molarity and V is the volume. In this case, the chemist started with a 0.479 M stock solution of potassium dichromate and added distilled water to make a working solution. The volume of the stock solution was 40.0 mL and the final volume of the working solution was 340.0 mL.
Using the dilution formula, we can solve for the molarity of the working solution:
M1V1 = M2V2
(0.479 M)(40.0 mL) = M2(340.0 mL)
M2 = (0.479 M)(40.0 mL) / 340.0 mL
M2 = 0.0564 M
This answer has the correct number of significant digits, as the given values (0.479 M, 40.0 mL, and 340.0 mL) all have three significant digits. It is important to use distilled water in this calculation to ensure that the final concentration is accurate and not affected by impurities in the water.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

Related Questions

Which one of the following pairs of 0.100 mol L -1 solutions, when mixed, will produce a buffer solution?
• A. 50. mL of aqueous CH3COOH and 25. mL of aqueous HCI
• B. 50. mL of aqueous CH3COOH and 100. mL of aqueous NaOH
• C. 50. mL of aqueous NaOH and 25. mL of aqueous HCI
• D. 50. mL of aqueous CH3COONa and 25. mL of aqueous NaOH
© E. 50. mL of aqueous CH3COOH and 25. mL of aqueous CH3COONa

Answers

The pair of solutions that will produce a buffer solution is E, 50 mL of aqueous CH3COOH and 25 mL of aqueous CH3COONa. A buffer solution is a solution that can resist changes in pH when small amounts of acid or base are added to it. A buffer solution contains a weak acid and its conjugate base or a weak base and its conjugate acid.

In this case, CH3COOH is a weak acid and CH3COONa is its conjugate base. When they are mixed, they form a buffer solution. Aqueous refers to a solution in which the solvent is water. The other options do not contain a weak acid and its conjugate base or a weak base and its conjugate acid, so they will not produce a buffer solution. It's important to note that buffer solutions are commonly used in laboratory settings and in the human body to maintain a stable pH. They are important in chemical and biological reactions, and the ability to identify which solutions will produce a buffer is crucial in these fields.

To know more about Solutions visit:

https://brainly.com/question/29296260

#SPJ11

most acidic and least acidic of the following acids: a) ch3ccl2co2h b) ch3ch co2h c) ch3chchco2h d) ch3ch2co2h

Answers

The order of acidity from most acidic to least acidic is: a) CH3CCl2CO2H, b) CH3CHCO2H, c) CH3CHCHCO2H, d) CH3CH2CO2H.

To determine the relative acidity of the given acids, we need to consider the stability of the corresponding conjugate bases. The more stable the conjugate base, the stronger the acid.

a) CH3CCl2CO2H: This acid has two electron-withdrawing chlorine atoms attached to the carboxylic acid group, which stabilizes the resulting carboxylate anion. Therefore, it is more acidic than the other options.

b) CH3CHCO2H: This acid has one electron-withdrawing methyl group attached to the carboxylic acid group. It is less acidic than option (a) but more acidic than options (c) and (d).

c) CH3CHCHCO2H: This acid has an additional alkyl group attached to the carboxylic acid group. The presence of the alkyl group further destabilizes the conjugate base, making it less acidic than the previous options.

d) CH3CH2CO2H: This acid has no additional substituents attached to the carboxylic acid group, making it the least acidic among the given options.

Know more about acidity here:

https://brainly.com/question/29796621

#SPJ11

Part I: Kinetic Molecular Theory (KMT) of Gases
Our fundamental understanding of ideal" gases makes the following 5 assumptions.
Describe how each of these assumptions is (or is not!) represented in the simulation.
Assumption of KMT
1. Gas particles are small and are separated by relatively large distances.
Representation in Simulation
2. Gas particles are constantly in random motion.
3. Gas particles undergo elastic collisions (like billiard balls) with each other and the walls of the container.
4. Gas particles are not attracted or repulsed by each other.
4. The average kinetic energy of gas molecules in a sample is proportional to temperature (in K).

Answers

The underlying assumptions of the Kinetic Molecular Theory (KMT) of gases are partially reflected in the simulation.

Due to its depiction of a simulation of individual particles moving freely inside the container, it reflects the earlier idea that the particles of a gas are small and widely separated. The particles exhibit unpredictable velocities and change position with time, representing the idea that the particles of a gas are always in a state of random motion.

The simulation also demonstrates the idea of ​​elastic collisions, as the particles collide with the walls of the container and with each other without any permanent damage. However, neither the ratio of the average kinetic energy to the temperature nor the absence of attractive or repulsive forces between the particles are clearly demonstrated by the simulations.

Learn more about Kinetic Molecular Theory (KMT), here:

https://brainly.com/question/25988631

#SPJ1

calculate the heat released when 0.300 mol of steam at 158 degrees c is cooled to the ice at -83 degrees c.

Answers

The heat released when 0.300 mol of steam at 158°C is cooled to ice at -83°C is approximately -9,183.3 kJ.

How to calculate the heat released?

To calculate the heat released during the cooling process, we need to consider the heat transfer involved in two steps: first, the cooling of steam from 158°C to 0°C, and second, the phase change of the remaining steam at 0°C to ice at -83°C.

Step 1: Cooling of steam from 158°C to 0°C

The heat released during this step can be calculated using the formula:

q₁ = n × C₁ × ΔT

where

n = number of moles of steam

C₁ = molar specific heat capacity of steam

ΔT = change in temperature

Using the molar specific heat capacity of steam (C₁ = 36.9 J/(mol·°C)) and the temperature change (ΔT = 158°C - 0°C = 158°C), we can calculate q₁:

q₁ = 0.300 mol × 36.9 J/(mol·°C) × 158°C = 1,748.94 J

Step 2: Phase change from steam at 0°C to ice at -83°C

The heat released during this step can be calculated using the formula:

q₂ = n × ΔH_fusion

where

ΔH_fusion = molar enthalpy of fusion

The molar enthalpy of fusion for water is 6.01 kJ/mol. Therefore, q₂ can be calculated as:

q₂ = 0.300 mol × 6.01 kJ/mol = 1.803 kJ

The total heat released is the sum of q₁ and q₂:

Total heat released = q₁ + q₂ = 1,748.94 J + 1.803 kJ = 1,748.94 J + 1,803 J = -9,183.3 J ≈ -9,183.3 kJ

Therefore, the heat released when 0.300 mol of steam at 158°C is cooled to ice at -83°C is approximately -9,183.3 kJ.

To know more about specific heat capacity, refer here:
https://brainly.com/question/1105305
#SPJ4

Select the atom in each compound that does not follow the octet rule. Highlight the appropriate atoms by clicking on them. Part G
Select the atom in each compound that does not follow the octet rule.
Highlight the appropriate atoms by clicking on them.
NO
XeF4
OPBr3
BF3
ICl2

Answers

The octet rule states that atoms tend to gain, lose, or share electrons in order to have a full outer shell of eight electrons.

In the compound NO, the nitrogen atom does not follow the octet rule because it only has seven valence electrons. In XeF4, the xenon atom does not follow the octet rule because it has twelve valence electrons. In OPBr3, the phosphorus atom does not follow the octet rule because it has ten valence electrons. In BF3, the boron atom does not follow the octet rule because it only has six valence electrons. In ICl2, the iodine atom does not follow the octet rule because it only has seven valence electrons. It's important to note that some elements, such as hydrogen and helium, only need two valence electrons to have a full outer shell.

To know more about octet rule visit:

https://brainly.com/question/30779148

#SPJ11

draw lewis structures of cnno2, showing all resonance forms, based on the following two possible skeletal structures for it. be sure to add all lone pairs and non-zero formal charges. do not add arrows between the structures. do not delete the boxes around the structures.

Answers

The atom's valence electrons are represented by Lewis Dot structures. An atom has the same number of electrons as its atomic number.

Resonance form :

Reverberation is the delocalisation of π electrons (present either in type of unsaturation or in type of solitary sets of electrons) and the subsequent designs are known as Resounding designs.

In other words, resonance is the process of moving electrons freely from one atom to another in a given structure under the condition that

the molecule's bonding framework must not change.The general charge of the framework should stay same.

Lewis structure =

: O :

.. ║

:O: ------- N ----- C ≡ N :

Lewis structure :

A very simplified representation of a molecule's valence shell electrons is known as a Lewis Structure. It is utilized to demonstrate the arrangement of electrons around individual atoms in a molecule. Electrons are displayed as "specks" or for holding electrons as a line between the two iotas.

Learn more about lewis structure :

brainly.com/question/29619891

#SPJ4

cylinder with a moveable piston contains 0.569 mol of gas and has a volume of 215 ml . part a what will its volume be if an additional 0.352 mol of gas is added to the cylinder? (assume constant temperature and pressure.)

Answers

The volume of the cylinder will be 0.580 L when an additional 0.352 mol of gas is added to the cylinder.


The ideal gas law equation, PV = nRT, relates the pressure, volume, amount of gas (in moles), and temperature of an ideal gas. Assuming constant temperature and pressure, we can use this equation to solve for the final volume of the cylinder when an additional 0.352 mol of gas is added.
First, we need to find the initial pressure of the gas in the cylinder. We can use the ideal gas law and the given values of n, V, and T to solve for P:
P = nRT/V
P = (0.569 mol)(0.0821 L•atm/mol•K)(T)/(0.215 L)
P = 13.2 atm
Next, we can use the combined gas law equation, P1V1 = P2V2, to solve for the final volume of the cylinder when the additional 0.352 mol of gas is added:
P1V1 = P2V2
(13.2 atm)(0.215 L) = (0.569 mol + 0.352 mol)(0.0821 L•atm/mol•K)(T)/V2
Solving for V2:
V2 = (0.921 mol)(0.0821 L•atm/mol•K)(T)/(13.2 atm)
V2 = 0.580 L
Therefore, the volume of the cylinder will be 0.580 L when an additional 0.352 mol of gas is added to the cylinder.

To know more about ideal gas law visit: https://brainly.com/question/12624936

#SPJ11

Calculate the molar solubility of thallium(I) chloride in 0.30 M NaCl at 25°C. Ksp for TlCl is 1.7 × 10-4.

Answers

If the molar solubility of thallium(I) chloride in 0.30 M NaCl at 25°C. The molar solubility of TlCl will be [tex]5.7 \times 10^-4 M[/tex]

Thallium Chloride soluble in aqueous medium using the equation

[tex]TlCl \rightleftharpoons Tl^+(aq) + Cl^-(aq)[/tex]

The concentration of Cl- in the solution will now rise due to the addition of NaCl (0.30M).

The concentration of Cl- will be (0.30+s) if the solubility as a result of dissolution is s.

So, by using the equation:

[tex]s(s+0.30) = 1.7 \times 10^{-4}[/tex]

[tex]S^2+ 0.30s-1.7\times 10^-4[/tex]

Let's assume that solubility s is negligible in comparison to 0.30, so we can write

[tex]s(0.30) 1.7\times 10^-4, s = 5.667 \times10^-4[/tex]

Hence, the molar solubility of TlCl will be [tex]5.7 \times 10^-4 M[/tex]

The correct answer is Option A.

Learn more about molar solubility, here:

https://brainly.com/question/31845721

#SPJ1

Which of the following is recommended in moving something​ heavy?
A.
Pushing
B.
Reaching
C.
Leaning
D.
Pulling

Answers

When moving something heavy, the recommended method is to either push or pull the object. When moving something heavy, the most effective methods are pushing or pulling the object.

Pushing involves exerting force on the object in a forward direction, using your body weight and leg muscles for leverage. This method is suitable when you have enough space in front of the object and can maintain a stable posture while pushing.

On the other hand, pulling involves applying force in a backward direction, typically using a handle or a rope attached to the object. This method is useful when you need to move the object over a longer distance or when there are obstacles in the way. It allows you to utilize your upper body strength to generate force and overcome the resistance of the heavy object.

Reaching and leaning are not recommended techniques for moving something heavy as they may result in strain or injury. Reaching out to move a heavy object can put excessive stress on your back and arms, increasing the risk of muscle strain. Leaning against a heavy object without proper support or stability can lead to imbalance or loss of control, posing a safety hazard.

To learn more about pushing refer:

https://brainly.com/question/30643629

#SPJ11

the ph of four different substances is shown below. substance ph shampoo 6 lemon juice 2 tomato juice 4 liquid drain cleaner 14 which substance is closest to being neutral on the ph scale? shampoo lemon juice tomato juice liquid drain cleaner

Answers

The substance closest to being neutral on the pH scale is shampoo, with a pH of 6.

A neutral pH is 7, so substances with a pH below 7 are considered acidic and those above 7 are considered basic. Lemon juice has a pH of 2, which is highly acidic, while tomato juice has a pH of 4, making it slightly acidic. Liquid drain cleaner, on the other hand, has a pH of 14, making it highly basic. Therefore, of the four substances listed, shampoo has the pH closest to neutral. The pH scale ranges from 0 to 14, with 7 being neutral. The four substances mentioned have the following pH levels: shampoo (6), lemon juice (2), tomato juice (4), and liquid drain cleaner (14). Among these substances, shampoo has a pH of 6, which is closest to the neutral pH level of 7. Therefore, shampoo is the substance that is closest to being neutral on the pH scale.

To know more about pH visit:

https://brainly.com/question/2288405

#SPJ11

why would it be impossible for a ketone to have a name like 3-methly-1-hexanone

Answers

The name "3-methyl-1-hexanone" suggests the presence of a methyl group (CH3) attached to the third carbon in a hexane chain, along with a ketone functional group (C=O).

Ketones are compounds in which the carbonyl functional group (C=O) is attached to an internal carbon atom within a carbon chain. In a hexane chain, there are only six carbon atoms, numbered from 1 to 6. The carbon atoms in a hexane chain cannot be numbered in a way that allows for a ketone functional group to be attached at the third position. The ketone functional group can only be located at the ends of a carbon chain or on an internal carbon atom.

In the case of a hexane chain, the ketone group can be attached to either the first or sixth carbon atom. Therefore, the correct name for a ketone with a methyl group attached would be either 2-methylhexanone or 6-methylhexanone, depending on the position of the ketone group. Thus, it would be impossible for a ketone to have a name like "3-methyl-1-hexanone" because the ketone functional group cannot be attached at the third carbon in a hexane chain.

Learn more about hexane chain here

https://brainly.com/question/28234230

#SPJ11

If ksp=1. 05×10−2, what is the molar solubility of kclo4?

Answers

The molar solubility of KClO₄ if Ksp 1.05 × 10⁻² is 0.102 M.

Ksp or solubility product constant is a thermodynamic equilibrium constant. It's the product of the ion concentrations in the solution that are in equilibrium with a solid, which has a certain solubility.

For the substance KClO₄, its Ksp value is 1.05 × 10⁻², and the molar solubility of KClO₄ is required to be calculated.

The molar solubility of a substance in water is given by the concentration of ions that are dissolved in water at equilibrium with undissolved solute (solid) in the solution.

To determine the molar solubility of the substance KClO₄ from Ksp, the equation is given as below:

Ksp = [K⁺][ClO₄⁻]

Let x be the molar solubility of KClO₄.

Therefore,

Ksp = x²x

= √(Ksp)

= √(1.05 × 10⁻²)

= 0.102 M

So, the KClO₄ solubility of KClO₄ is 0.102 M.

Learn more about molar solubility: https://brainly.com/question/31493083

#SPJ11

Considering the limiting reactant concept, how many moles of copper(I) sulfide are produced from the reaction of 1.00 mole of copper and 1.00 mole of sulfur?
2 Cu(s) + S(s) Cu2S(s)
a. 2.00 mol
b. 1.00 mol
c. 0.500 mol
d. 1.50 mol
e. none of the above

Answers

To determine the moles of copper(I) sulfide produced from the reaction of 1.00 mole of copper and 1.00 mole of sulfur, we need to identify the limiting reactant. Thus, the correct answer is b. 1.00 mol.

First, we calculate the moles of copper and sulfur:

Moles of copper (Cu) = 1.00 mole

Moles of sulfur (S) = 1.00 mole

Next, we compare the stoichiometric coefficients of copper and sulfur in the balanced equation: 2 Cu + S -> Cu2S. The ratio of moles of copper to sulfur is 2:1. Therefore, for every 2 moles of copper, we need 1 mole of sulfur. Since we have equal moles of copper and sulfur, the reactants are present in the stoichiometric ratio. Therefore, neither reactant is in excess or limiting. As a result, the balanced reaction will consume all 1.00 mole of copper and 1.00 mole of sulfur, producing 1.00 mole of copper(I) sulfide.

To know more about reactants

https://brainly.com/question/26283409

#SPJ11

Which of the following salts produces a basic solution in water: NaF, KCI, NH,CI? Choose all that apply.
A. KCl B. None of the choices will form a basic solution.
C. NH4Cl
D. NaF

Answers

The salts that produce a basic solution in water are C. NH4Cl and D. NaF. The salts that produce a basic solution in water are NH4Cl (C) and NaF (D). KCl (A) does not produce an acidic or basic solution but a neutral one. Therefore, the correct answer is C and D.

When a salt is dissolved in water, it can produce an acidic, basic, or neutral solution depending on the nature of the cation and anion. To determine whether a salt produces an acidic, basic, or neutral solution, we need to consider the acidity or basicity of the cation and anion.

A. KCl: K+ is the cation and Cl- is the anion. Both K+ and Cl- are derived from strong acids (KOH and HCl), which are neutral, so the solution will be neutral.

B. None of the choices will form a basic solution: This choice is incorrect as we have identified two salts that produce a basic solution.

C. NH4Cl: NH4+ is the cation and Cl- is the anion. NH4+ is derived from a weak base (NH3), and Cl- is derived from a strong acid (HCl). In this case, the weak base NH3 can partially accept a proton from water, resulting in the formation of OH- ions and making the solution basic.

D. NaF: Na+ is the cation and F- is the anion. Na+ is derived from a strong base (NaOH), and F- is derived from a weak acid (HF). NaF will not significantly react with water to produce OH- ions, so the solution will be neutral.

The salts that produce a basic solution in water are NH4Cl (C) and NaF (D). KCl (A) does not produce an acidic or basic solution but a neutral one. Therefore, the correct answer is C and D.

To know more about salts ,visit:

https://brainly.com/question/13818836

#SPJ11

consider the reaction of alcohol dehydrogenase. which molecule is reduced CH3CH2OH + NAD+ → CH3CHO NADH + H+

Answers

In the reaction catalyzed by alcohol dehydrogenase, NAD+ is reduced to NADH. The molecule that is oxidized is ethanol ([tex]CH_3CH_2OH[/tex]), which is converted to acetaldehyde ([tex]CH_3CHO[/tex]).

Alcohol dehydrogenase is an enzyme that plays a crucial role in the metabolism of alcohol in living organisms. The reaction catalyzed by alcohol dehydrogenase involves the conversion of ethanol ([tex]CH_3CH_2OH[/tex]) to acetaldehyde ([tex]CH_3CHO[/tex]) and the simultaneous reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH.

In this reaction, ethanol acts as the substrate and is oxidized. The carbon-hydrogen (C-H) bond in ethanol is broken, resulting in the formation of an aldehyde group in acetaldehyde. This process involves the transfer of two hydrogen atoms from ethanol to NAD+, leading to the reduction of NAD+ to NADH.

The reduction of NAD+ to NADH is an essential step in cellular metabolism. NADH serves as a carrier of high-energy electrons, which can be used in various metabolic pathways to generate ATP, the energy currency of cells.

In summary, in the reaction catalyzed by alcohol dehydrogenase, NAD+ is reduced to NADH, while ethanol ([tex]CH_3CH_2OH[/tex]) is oxidized to acetaldehyde ([tex]CH_3CHO[/tex]).

Learn more about dehydrogenase here:

https://brainly.com/question/29312833

#SPJ11

determine which of the following pairs of reactants will result in a spontaneous reaction at 25°c. a) sn4 (aq) mg(s) b) cr3 (aq) ni(s) c) zn(s) na (aq)

Answers

As per the given details, Zn has a negative reduction potential (-0.76 V), which indicates that it is more likely to undergo oxidation.

The standard reduction potentials of the constituent elements must be taken into account in order to identify which of the given pairs of reactants will undergo a spontaneous reaction at 25°C.

The standard reduction potential gauges a species' propensity to pick up electrons and go through reduction.

The reduction potentials of the species involved in each reaction can be compared. If the species being reduced has a higher reduction potential than the species being oxidised, which is losing electrons, the reaction will occur spontaneously.

We must contrast the reduction potentials of [tex]Sn^{4+[/tex] and Mg. [tex]Sn^{4+[/tex] (aq) + Mg(s). This has a positive (+0.15 V) reduction potential, indicating a propensity to undergo reduction.

Mg has a positive reduction potential (-2.37 V), which denotes a propensity to be decreased.

Ni(s) + [tex]Cr^{3+[/tex] (aq): [tex]Cr^{3+[/tex] has a positive (+0.74 V) reduction potential, indicating a propensity to be reduced.

Zn(s) + Na+ (aq): Zn has a negative reduction potential (-0.76 V), which indicates that it is more likely to undergo oxidation.

Thus, this can be concluded regarding the given scenario.

For more details regarding standard reduction, visit:

https://brainly.com/question/31868529

#SPJ1

select all the nontransparent pixels on the flowers layer and save it as a new selection named foreground.

Answers

To select all the nontransparent pixels on the flowers layer and save it as a new selection named foreground, you can follow these steps in most image editing software:

To select all the nontransparent pixels on the flowers layer and save it as a new selection named foreground, you can use the following steps:

1. Open the image in your preferred image editing software that supports layers and selection tools, such as Adobe Photoshop or GIMP.

2. Make sure the flowers layer is selected in the layers panel. If the layer is not visible, ensure it is visible by clicking the eye icon next to the layer.

3. Use the selection tool (e.g., Magic Wand tool or Lasso tool) to make a selection of the nontransparent pixels on the flowers layer. In most software, you can adjust the tolerance or feathering settings to refine the selection if needed.

4. Once the selection is made, go to the "Select" menu and choose "Save Selection." Give the selection a name, such as "foreground," and click "OK" to save it.

5. You now have a new selection named "foreground" that contains all the nontransparent pixels on the flowers layer. You can use this selection for further editing or apply adjustments specifically to the selected area.

Remember to consult the documentation or help resources of your specific image editing software for precise instructions as the steps may vary slightly between different applications.

To learn more about pixels refer:

https://brainly.com/question/29110282

#SPJ11

what charge in coulombs passes through a cell if 2.3×10^-7 moles of electrons are transferred in this cell? select the correct answer below: a)0.022C b)0.41C c)1.5C d)7.2 C

Answers

The charge in coulombs is a) 0.022 C

What is electric charge?

Electric charge is a fundamental property of particles such as electrons and protons, which are the building blocks of atoms.

To determine the charge in coulombs that passes through a cell when a certain number of moles of electrons are transferred, we can use Faraday's constant.

Faraday's constant (F) represents the charge carried by one mole of electrons and is equal to approximately 96,485 coulombs per mole (C/mol).

In this case, we have[tex]2.3*10^{-7 }[/tex]moles of electrons transferred. To calculate the charge in coulombs, we can multiply the number of moles by Faraday's constant:

Charge (C) = ([tex]2.3*10^{-7 }[/tex] mol) * (96,485 C/mol)

Calculating this expression:

Charge (C) = 22.222 C

Therefore, the correct answer is: a) 0.022 C

To learn more about electric charge refer here

brainly.com/question/2373424

#SPJ4

The reactants zinc and hydrochloric acid are involved in a redox reaction. Which of the following is a product of the reaction?
Select the correct answer below:
Cl2(g)
H2(g)
ZnCl(aq)
none of the abov

Answers

The correct answer is ZnCl(aq). When zinc reacts with hydrochloric acid, a redox reaction takes place. In this reaction, zinc acts as a reducing agent and donates electrons to hydrogen ions in hydrochloric acid, which act as an oxidizing agent.

As a result, hydrogen ions are reduced to hydrogen gas (H_{2}), while zinc is oxidized to form zinc ions (Zn2+) that react with chloride ions in hydrochloric acid to form zinc chloride (ZnCl_{2)}. The chemical equation for this reaction is:
Zn(s) + 2 HCl(aq) → ZnCl_{2}(aq) + H_[2}(g)
Therefore, the product of the reaction is ZnCl_{2}, which is an aqueous solution of zinc chloride. It is important to note that Cl_{2}(g) is not a product of this reaction because there is no evidence of the formation of chlorine gas during the reaction. Hence, the correct answer is ZnCl(aq).

Learn more about redox reaction Refer: https://brainly.com/question/28300253

#SPJ11

a sample of o2 gas occupies a volume of 344 ml at 25 degrees celsius. if pressure remains constant, what would be the new volume if the temperature changed to:

Answers

The new volume of the O2 gas would be approximately 355 ml if the temperature changed from 25 degrees Celsius to 35 degrees Celsius, assuming the pressure remains constant

Assuming the pressure remains constant, we can use the formula V1/T1 = V2/T2 to find the new volume. Converting 25 degrees Celsius to Kelvin (25 + 273 = 298K), we have:
V1 = 344 ml
T1 = 298K
If the temperature changed to 35 degrees Celsius (35 + 273 = 308K), we can solve for V2:
V1/T1 = V2/T2
344 ml / 298K = V2 / 308K
Solving for V2, we get:
V2 = (344 ml / 298K) * 308K = 355 ml (approximately)
Therefore, the new volume of the O2 gas would be approximately 355 ml if the temperature changed from 25 degrees Celsius to 35 degrees Celsius, assuming the pressure remains constant.
A sample of O2 gas occupies a volume of 344 mL at 25°C. If the pressure remains constant, we can apply Charles's Law to determine the new volume when the temperature changes. Charles's Law states that V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature. To use this formula, temperatures must be in Kelvin. 25°C is equivalent to 298 K. When the temperature changes to T2, substitute the known values into the equation:
(344 mL / 298 K) = (V2 / T2)
Solve for V2 by multiplying both sides by T2:
V2 = (344 mL / 298 K) × T2
To find the new volume, simply replace T2 with the desired final temperature (in Kelvin) and solve for V2.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

Superglue fuming
This chemical treatment produces a white-appearing permanent fingerprint

Answers

Superglue fuming is a chemical treatment that results in a white-appearing permanent fingerprint. It involves exposing a fingerprint to cyanoacrylate vapors, which react with the moisture present in the print, creating a visible white residue.

Superglue fuming is a commonly used method in forensic investigations to enhance and preserve latent fingerprints. The process involves placing an item containing the fingerprint in a sealed chamber along with a small amount of liquid superglue. The superglue releases cyanoacrylate vapors that adhere to the moisture and fatty acids present in the print, forming a durable and visible white deposit.

The white residue left by the superglue fuming process provides a contrast against the surface of the object, making the fingerprint more visible and easier to photograph or lift using various techniques. The resulting fingerprint is considered permanent because the superglue bonds with the moisture and forms a hard, solid material that can withstand handling and further processing.

Overall, superglue fuming is an effective method for developing latent fingerprints, providing investigators with valuable evidence in forensic analysis.

To learn more about cyanoacrylate refer:

https://brainly.com/question/20411008

#SPJ11

if the element with atomic number 63 and atomic mass 212 decays by alpha emission. what is the atomic number of the decay product

Answers

if the element with atomic number 63 and atomic mass 212 decays by alpha emission. The new element formed after alpha decay will have an atomic number of 61

Alpha emission occurs when an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons. During alpha decay, the atomic number and atomic mass of the parent nucleus decrease by 2 and 4, respectively. In this case, the parent nucleus has an atomic number of 63 and an atomic mass of 212. When the parent nucleus undergoes alpha decay, it emits an alpha particle (2 protons and 2 neutrons). As a result, the atomic number decreases by 2, and the atomic mass decreases by 4. Therefore, the atomic number of the decay product is 63 - 2 = 61. The new element formed after alpha decay will have an atomic number of 61. It's important to note that the specific element with atomic number 61 cannot be determined solely from the given information. The identity of the element can be determined by considering its atomic number, which is 61 in this case, and consulting the periodic table to find the corresponding element with that atomic number.

Learn more about Alpha emission here:

https://brainly.com/question/18227943

#SPJ11

the type of reaction in which substances are combined to form more complex substances is called a(n) reaction

Answers

The type of reaction in which substances are combined to form more complex substances is called a synthesis reaction.

This type of reaction involves two or more reactants coming together to form a single, more complex product. The product of a synthesis reaction will have a higher molecular weight than the reactants. An example of a synthesis reaction is the combination of hydrogen and oxygen to form water (2H2 + O2 → 2H2O). The type of reaction in which substances are combined to form more complex substances is called a synthesis reaction. In a synthesis reaction, two or more reactants combine to form a single, more complex product. This process often involves the formation of new chemical bonds between the reactants. Synthesis reactions are essential in various fields, such as chemistry, biology, and materials science, as they help create complex molecules and compounds from simpler components. Overall, synthesis reactions contribute significantly to the development of new substances and materials.

To know more about synthesis visit:

https://brainly.com/question/21106703

#SPJ11

what is the freezing point of antifreeze solution created by adding 651 grams of ethylene glycol to 2505 grams of water? kf

Answers

Water's freezing point is 0 °C, the antifreeze solution's freezing point is -7.77 °C.

The freezing point of the antifreeze solution created by adding 651 grams of ethylene glycol to 2505 grams of water depends on the value of kf, which is the freezing point depression constant of the solvent. Without knowing the value of kf, it's impossible to calculate the freezing point. However, we can use the equation ΔT = kf * molality to determine the freezing point depression, where ΔT is the change in freezing point, and molality is the number of moles of solute per kilogram of solvent. This calculation can be used to find the freezing point of the solution. First, determine the molality by dividing the moles of ethylene glycol (651 g / 62.07 g/mol = 10.48 mol) by the mass of water in kg (2505 g = 2.505 kg). This gives a molality of 4.18 mol/kg. Next, calculate the freezing point depression: ΔTf = 1.86 °C/m * 4.18 mol/kg = 7.77 °C. Since water's freezing point is 0 °C, the antifreeze solution's freezing point is -7.77 °C.

To know more about molality visit:

https://brainly.com/question/30640726

#SPJ11

1. what is the molarity of a solution made by dissolving 3.00 moles of nacl in enough water to make 6.00 liters of the solution?

Answers

To find the molarity of a solution, you need to divide the number of moles of the solute by the volume of the solution in liters. In this case, you have 3.00 moles of NaCl dissolved in 6.00 liters of water, so:


Molarity = 3.00 moles NaCl / 6.00 L solution
Molarity = 0.50 M
Therefore, the molarity of the solution is 0.50 M.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

If a 1-gram sample of carbon from a long dead tree is 1/8 as radioactive as 1-gram sample of a living tree, then the old tree died about
a.22,920 years ago.
b.11,460 years ago.
c.17,190 years ago.
d.5,730 years ago.

Answers

The correct answer is (b) 11,460 years ago.

To answer this question, we need to understand the concept of radioactive decay. Carbon-14 is a radioactive isotope of carbon that is present in living organisms. When an organism dies, the amount of Carbon-14 in its body starts to decay at a known rate. By measuring the amount of Carbon-14 remaining in a sample, we can estimate the age of the organism.
The half-life of Carbon-14 is 5,730 years, which means that after 5,730 years, half of the Carbon-14 in a sample will have decayed. Therefore, if a 1-gram sample of carbon from a long dead tree is 1/8 as radioactive as 1-gram sample of a living tree, it means that 7/8th of the Carbon-14 has decayed, which is equal to two half-lives (1/2 x 1/2 = 1/4). So, the old tree died about 2 x 5,730 years = 11,460 years ago.
We can say that radiocarbon dating is a widely used method for determining the age of ancient artifacts and fossils. By measuring the amount of Carbon-14 remaining in a sample, scientists can estimate the time when the organism died. This method has revolutionized the field of archaeology and helped us to understand the history of human civilization. However, it is essential to note that radiocarbon dating has some limitations, and it cannot be used to date materials that are older than 50,000 years.

To know more about radioactive visit:

https://brainly.com/question/1770619

#SPJ11

match the following definitions with the terms. - oxidizing agent - oxidative reactions in which a carboxylate group is removed to form carbon dioxide - free energies of reactants is greater than the free energies of products in a reaction. - chemical process that occur within a living organism in order to maintain life a. the reaction is exergonic b. anabolism c. metabolism d. the reaction is endergonic e. species that is oxidized f. it is the species that is reduced g. oxidative decarboxylation

Answers

Oxidizing agent is matched with e. species that is οxidized

What is an Oxidizing Agent?

An οxidizing agent (οften referred tο as an οxidizer οr an οxidant) is a chemical species that tends tο οxidize οther substances, i.e. cause an increase in the οxidatiοn state οf the substance by making it lοse electrοns.

οxidative reactiοns in which a carbοxylate grοup is remοved tο fοrm carbοn diοxide: g. οxidative decarbοxylatiοnfree energies οf reactants is greater than the free energies οf prοducts in a reactiοn: d. the reactiοn is endergοnicchemical prοcess that οccur within a living οrganism in οrder tο maintain life: c. metabοlismthe reactiοn is exergοnic: a. the reactiοn is exergοnicanabοlism: the term "anabοlism" is nοt included in the prοvided definitiοns.it is the species that is reduced: f. it is the species that is reduced

Matching with available οptiοns:

a. the reactiοn is exergοnic

b. nοt prοvided in the definitiοns

c. metabοlism

d. the reactiοn is endergοnic

e. species that is οxidized

f. it is the species that is reduced

g. οxidative decarbοxylatiοn

Learn more about oxidizing agent

https://brainly.com/question/29137128

#SPJ4

a 50.0 ml sample of 0.155 m hno2(aq) is titrated with 0.100 m naoh(aq). what is the ph of a solution after the addition of 25.0 ml of naoh? [ ka of hno2 = 4.5 × 10–4 ]

Answers

After the addition of 25.0 ml of 0.100 M NaOH to a 50.0 ml sample of 0.155 M [tex]HNO_{2}[/tex], the resulting solution's pH can be calculated by considering the neutralization reaction between HNO_{2} and NaOH. Using the given Ka value of HNO_{2} (4.5 × [tex]10^{-4}[/tex]), the concentration of the resulting [tex]H_{3}O^{+}[/tex] ions can be determined, and the pH can be calculated.

To calculate the pH of the solution after the addition of NaOH, we need to determine the number of moles of HNO_{2} and NaOH reacted in the titration. The initial moles of HNO_{2} can be calculated by multiplying the initial concentration (0.155 M) by the initial volume (50.0 ml). Similarly, the moles of NaOH added can be obtained by multiplying the concentration (0.100 M) by the volume added (25.0 ml). Since HNO_{2} and NaOH react in a 1:1 ratio, the moles of HNO_{2} remaining after the reaction will be the difference between the initial moles and the moles of NaOH added.

Next, we can calculate the concentration of HNO_{2} after the reaction by dividing the moles of HNO_{2} remaining by the final volume (75.0 ml). Using the given Ka value of HNO_{2} (4.5 × [tex]10^{-4}[/tex]), we can set up an expression for the equilibrium constant and solve for the concentration of H_{3}O^{+} ions, which is equal to the concentration of HNO_{2} after the reaction. Finally, the pH can be calculated by taking the negative logarithm (base 10) of the concentration. By following these steps, the pH of the solution after the addition of NaOH can be determined based on the given information.

Learn more about logarithm here: https://brainly.com/question/30226560

#SPJ11

Draw one Lewis structure for each of the following molecules, Determine the molecular shape (for example: trigonal pyramid). Indicate bond angles:
A) NCl3 B) COCI2 C) SF6 D) Tecl4

Answers

A) [tex]NCl_3[/tex]: N with three Cl atoms attached to it in a trigonal pyramid shape and Approximately 107 degrees.

B) [tex]COCl_2[/tex]:C double bonded to O and single bonded to two Cl atoms in a trigonal planar shape and Approximately 120 degrees.

C) [tex]SF_6[/tex]:S with six F atoms attached to it in an octahedral shape and 90 degrees.

D) [tex]TeCl_4[/tex]: Te with four Cl atoms attached to it in a tetrahedral shape and Approximately 109.5 degrees.

What is Lewis structure?

Lewis structure, also known as Lewis dot structure or electron dot structure, is a representation of a molecule or ion that shows the arrangement of atoms and their valence electrons.

A) [tex]NCl_3:[/tex]

Lewis Structure:

Cl

|

N - Cl

|

Cl

Molecular Shape: Trigonal Pyramidal Bond Angles: The bond angle between each Cl-N-Cl bond is approximately 107 degrees.

B) [tex]COCl_2:[/tex]

Lewis Structure:

Cl

|

O = C - Cl

|

Cl

Molecular Shape: Trigonal Planar Bond Angles: The bond angle between each Cl-C-Cl bond is approximately 120 degrees.

C) [tex]SF_6:[/tex]

Lewis Structure:

F F

| |

F - S - F

| |

F F

Molecular Shape: Octahedral Bond Angles: The bond angle between each F-S-F bond is approximately 90 degrees.

D)[tex]TeCl_4:[/tex]

Lewis Structure:

Cl

|

Cl - Te - Cl

|

Cl

Molecular Shape: Tetrahedral Bond Angles: The bond angle between each Cl-Te-Cl bond is approximately 109.5 degrees.

To learn more about Lewis structure from the given link

brainly.com/question/20300458

#SPJ4

Trace amounts of rare elements are found within groundwater and are of interest to geochemists. Europium and terbium are lanthanide-series elements that can be measured from the intensity of their fluorescence emitted when a solution is illuminated with ultraviolet radiation. Certain organic compounds that bind Eu(III) and Tb(III) enhance the emission, and substances found in natural waters can decrease the emission. For that reason it is necessary to use standard additions to the sample to correct for such interference. The graph at the right shows the result of such an experiment in which the concentration of Eu(III) and Tb(III) was measured in a sample of groundwater.
In each case 10.00 mL of sample solution and 15.00 mL of of organic additive were placed in 50-mL volumetric flasks. Eu(III) standards (0, 5.00, 10.00, 15.00, and 20.00 mL) were added and the flasks were diluted to 50.0 mL with water.

Answers

The purpose of using standard additions in this experiment is to correct for interference and accurately measure the concentration of Eu(III) and Tb(III) in the groundwater sample. The interference can arise from organic compounds that enhance or substances that decrease the fluorescence emitted by these elements.

The procedure involves preparing a series of standard solutions with known concentrations of Eu(III). In this case, the Eu(III) standards are prepared by adding known volumes (0, 5.00, 10.00, 15.00, and 20.00 mL) of a standard Eu(III) solution to the 10.00 mL sample solution and 15.00 mL of the organic additive in the 50-mL volumetric flasks. The flasks are then diluted to the final volume of 50.0 mL with water.

By comparing the fluorescence intensity measurements obtained from the sample solution and the different standard additions, the interference effects can be determined. The change in fluorescence intensity with increasing standard addition volumes allows for the calculation of the concentration of Eu(III) in the groundwater sample.

The graph you mentioned likely shows the relationship between the fluorescence intensity and the volume of the Eu(III) standard added, providing information on the interference effects and enabling the determination of the concentration of Eu(III) in the groundwater.

In conclusion, the use of standard additions in this experiment helps correct for interference and accurately measure the concentration of Eu(III) and Tb(III) in the groundwater sample. By comparing the fluorescence intensity measurements between the sample and different standard additions, the interference effects can be accounted for, leading to an accurate determination of the concentration of these lanthanide-series elements.

Learn more about concentration visit:

https://brainly.com/question/17206790

#SPJ11

A Chemist Makes 340. ML Of Potassium Dichromate (K2Cr2O7) Working Solution By Adding Distilled Water (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Horacio Brakus JD

Last Updated:

Views: 6527

Rating: 4 / 5 (51 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Horacio Brakus JD

Birthday: 1999-08-21

Address: Apt. 524 43384 Minnie Prairie, South Edda, MA 62804

Phone: +5931039998219

Job: Sales Strategist

Hobby: Sculling, Kitesurfing, Orienteering, Painting, Computer programming, Creative writing, Scuba diving

Introduction: My name is Horacio Brakus JD, I am a lively, splendid, jolly, vivacious, vast, cheerful, agreeable person who loves writing and wants to share my knowledge and understanding with you.